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第 6.5章　限界代替率

第２章で議論した効用最大化モデルでは、消費者は自分の好みを効用関数という形で
しっかり理解しているという前提で議論されていた。これに対して、我々が購買活動を行
う場合、たいていはそこまで自分の好みを深く認識しないという批判は、当然に考慮され
なければならないものである。そこで、局所的に、いま自分が持っている消費計画の近く
でだけ好みがわかる状況を想定するならば、どのような理論が構築できるであろうか。こ
の考え方から、自然と我々は限界代替率と呼ばれる概念に行き着くことになる。
限界代替率は、現代的なミクロ経済学の教科書では効用関数が特定の追加的仮定を満た

すときにだけ現れ、消費者理論にとっては限定的な役割しか果たさない。しかし、上記で
述べたように、限界代替率は本来、効用関数とは独立な概念である。それは、効用最大化
という形とは異なるもう一つの消費者理論の定式化と関わっており、そして効用最大化よ
りもそちらの方が歴史は古いとすら言える。
本章ではこの限界代替率の理論について、主に n = 2の場合に限定して議論を行う。た

だし、細矢 (2025)の第７章にて扱われた微分方程式の基礎理論は、ここですべて使用す
ることにする。本章を通じて、消費集合 Ωは Rn

+ か Rn
++ のいずれかを考える。

6.1 定義
まずは n = 2かつ Ω = R2

++ の場合を考えよう。消費ベクトル x ∈ Ωを所持している
消費者がなんらかの取引機会に直面した場合、彼がどのようにその取引を判定するかを考
えてみよう。取引を記述するために交換比率 (exchange ratio)の概念を導入する。いま、
考えている取引の交換比率が aであるとすれば、彼は第一財を t個諦めることによって at

個の第二財を手に入れることができる。あるいは、第一財を t個得るために at個の第二
財を手放さなければならない。
この消費者が考える「適正な」交換比率を σ(x)と書くことにする。いま、交換比率 aの

取引が持ちかけられたとすると、a < σ(x)ならばこの消費者は第二財を少し手放して第
一財を手に入れようとするだろうし、逆に a > σ(x)ならばこの消費者は第一財を少し諦
めて第二財を得ようとするであろう。この「適正な」交換比率は手持ちの消費ベクトル x



2 第 6.5章　限界代替率

が変わると変化する点に注意を要する。たとえばパンをたくさん持っているがワインはほ
とんど持っていない消費者がある取引機会においてパンを少し手放してワインを得たとす
ると、ワインの希少性は減り、逆にパンは少し手持ちが少なくなるので、この消費者はワ
インを追加で得る重要度が減り、逆にパンを得る重要度は増えると考えられる。したがっ
て適正な交換比率は手持ちの消費ベクトルによって値が変化する関数 σ : Ω → R++ とし
て捉える必要がある。この関数を消費者の限界代替率 (marginal rate of substitution)と
呼ぶ。
限界代替率を用いた消費者行動の分析は二つありうるが、ここでは第一の考え方とし
て、この消費者が取引を停止する条件を求めてみよう*1。消費者の手持ちの所得が mで
あり、価格 pの下での取引が可能であるとき、p ·x = mであるような点 xから第一財を t

個増やすために x2 を売り払う状況を考えよう。このとき、到達する新しい消費ベクトル
を (x1 + t, x2 − at)とするならば、

p1(x1 + t) + p2(x2 − at) = m

でなければならない。しかし
p1x1 + p2x2 = m

であるから、差し引きすることで

p1t− ap2t = 0

が得られる。これを整理すると、
a =

p1
p2

となる。したがってこの取引に関する交換比率は a = p1

p2
で与えられる。これが σ(x)と

一致していない限り、消費者は取引を続けようとするだろう。よって、取引を停止すると
きの手持ちの消費ベクトルの集合は以下のように表される。

fσ(p,m) = {x ∈ Ω|p · x = m, σ(x) = p1/p2}.

この集合値関数を σに対応する需要関数と称する。注意して欲しいのは、第２章の需要関
数とは異なり、この関数がなんらかの弱順序の最大点で表されるということは仮定されて
いないということである。実際、後に我々はこの関数が第２章の意味での「需要関数」に
なるための条件を議論するが、その条件が成り立っていない場合には、たとえこの関数が
一価であったとしても、それは「需要候補」でしかなく、「需要関数」ではないのである。

*1 6.5節でもう一つの分析について述べる。
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6.2 連続微分可能な効用関数の限界代替率
引き続き n = 2かつ Ω = R2

++ とする。いま、効用関数 u : Ω → Rが与えられており、
連続微分可能かつ準凹で、さらに∇u(x) � 0がすべての x ∈ Ωについて成り立つとしよ
う。以降、この章を通じて、 ∂u

∂xi
のことを ui と略記することにする。この関数を x ∈ Ω

の付近で一次のテイラー展開をすると、

u(y) ≈ u(x) + u1(x)(y1 − x1) + u2(x)(y2 − x2)

と書くことができる。この右辺を v(y)と書くことにしよう。これを整理すると、

v(y) = v(x) ⇔ u1(x)(y1 − x1) + u2(x)(y2 − x2) = 0

⇔ u1(x)(y1 − x1) = u2(x)(x2 − y2)

⇔ u1(x)

u2(x)
=

x2 − y2
y1 − x1

となる。この右辺の分数 x2−y2

y1−x1
は vの値が変わらない「交換比率」であると考えられるた

め、上の式はこの消費者が点 xを所持しているときに適正だと感じる交換比率を計算する
式となっている。つまり、

σ(x) =
u1(x)

u2(x)
(1)

が、この場合の限界代替率の定義である。
いま、x ∈ fσ(p,m)であるための条件を書くと、

p · x = m,
p1
p2

= σ(x) =
u1(x)

u2(x)

となる。ところが第２章の定理 2.1より、この条件は x ∈ fu(p,m)と同値である。した
がって我々はただちに以下の結果を得る。

定理 6.1. n = 2とし、Ω = R2
++ とする。u : Ω → Rが連続微分可能かつ準凹で、かつ

∇u(x) � 0をすべての点で満たしたとすると、(1)で与えられた限界代替率 σ に関して、

fσ = fu

が成り立つ。

6.3 限界代替率に付随する効用関数
前節では、効用関数 u : Ω → Rを与えて、そこから限界代替率 σ : Ω → Rを構成した。

ところが実は逆に、限界代替率から効用関数を構成することもできる。次の定理はこの理
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論において最も重要な役割を果たすものである。

定理 6.2. n = 2 とし、Ω = R2
++ とする。このとき、任意の連続微分可能な関数

σ : Ω → R++ に対して、関係 (1) を満たすような連続微分可能で強く増加的な関数
u : Ω → Rが存在する。また、σ が k 階連続微分可能ならば uも k 階連続微分可能に取
れる。

証明. まず、x ∈ Ωをパラメータとする次の微分方程式

ċ(z) = −σ(z, c(z)), c(x1) = x2 (2)

を考え、これの解関数を c(z;x)と書くことにする。なお、定理 7.5や定理 7.6では初期時
刻 x1 をパラメータとする議論は行っていなかったが、以下の関数

τ(z, d, x1) = −σ(z + x1, d)

を用いて、
ḋ(z) = τ(z, d(z), x1), d(0) = x2

という微分方程式を考えれば、この解 d(z)と元の問題の解 c(z)は関係 c(z) = d(z − x1)

で互いに結びついており、下の微分方程式には定理 7.5 も 7.6 も適用可能である。した
がって、解関数 c(z;x) の性質は定理 7.5 や定理 7.6 で示したものがすべて使用可能で
ある。
特に、任意の x ∈ Ωに対して、z 7→ c(z;x)の定義域を Ix と書くとき、これは定理 7.5

から開区間であり、また ċ(z;x) < 0 からこの関数は z について減少的であることがわ
かる。ここで、任意に与えた y ∈ Ωに対して、(z∗, c(z∗;x))が y の定数倍になるような
z∗ ∈ Ix が必ずただひとつだけ存在することを示そう。この条件は z∗y2 = c(z∗;x)y1 と
書き直せることに注意する。
最初に x1y2 ≤ x2y1 であるときを考える。もし zy2 > x2y1 となる z ∈ Ix が存在す
れば、

c(z;x)y1 < c(x1;x)y1 = x2y1 < zy2

となるため、中間値の定理からある z∗ ∈ Ix について c(z∗;x)y1 = z∗y2 となる。zy2 >

x2y1 となる z ∈ Ix が存在しなければ、1/N < x1y2 ≤ x2y1 < N となる N を取り、

C = {(v1, v2) ∈ Ω|1/N ≤ v1y2 ≤ N, 1/N ≤ v2y1 ≤ N}

と定義すると、これはコンパクトである。したがって補題 7.2から、ある z+ ∈ Ix が存在
して、x1 < z+ であり、かつ z+ < z となる任意の z ∈ Ix に対して (z, c(z;x)) /∈ C と
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ならなければならない。一方、仮定から z ∈ Ix ならば zy2 ≤ x2y1 < N である。よって
z > z+ となる z ∈ Ix をひとつ取れば

1/N < x1y2 < zy2 ≤ x2y1 < N, c(z;x)y1 ≤ c(x1;x)y1 = x2y1 < N

であるから、c(z;x)y1 < 1/N < x1y2 < zy2 でなければならない。よってふたたび中間
値の定理から、c(z∗;x)y1 = z∗y2 となる z∗ ∈ Ix が存在しなければならない。x1 > x2 で
あるときも同様にして z∗ の存在を示せる。また、z∗ の一意性は、c(z;x)が z について減
少的であることから明らかである。
特に、与えられた v ∈ Ωに対しての上の z∗ を uv(x)と書くことにしよう。uv(x)は

v1c(z;x)− v2z = 0

の解であるが、定理 7.6から左辺は連続微分可能であり、また
d

dz
[v1c(z;x)− v2z] = −v1σ(z, c(z;x))− v2 < 0

であるため、陰関数定理が適用可能である。したがって uv は連続微分可能である。また、
σ が k 階連続微分可能ならば uv も k 階連続微分可能である。
次に、x, y ∈ Ωとし、ただし c(z;x) = c(z; y)となる z がひとつでもあるとする。この

とき、定理 7.2からただちに、c(·;x) ≡ c(·; y)となることがわかる。特に、uv(x) = uv(y)

である。逆に、uv(x) = uv(y) であると仮定しよう。ここで、z = uv(x) とすると、
(z, c(z;x)) と (z, c(z; y)) は共に v の定数倍であり、したがって c(z;x) = c(z; y) である
から、c(·;x) ≡ c(·; y)となる。したがって uv(x) = uv(y)であることと、c(·;x) ≡ c(·; y)
となることは同値である。
特に、y ⪈ x とすると、z > x1 ならば c(z;x) < x2 であるため、c(z;x) = y2 となる

z は存在し得ない。したがって、c(z;x) = c(z; y) となる z も存在することはあり得な
い。ここで仮に u(y) ≤ u(x)であったと仮定しよう。各 z ∈ Ix に対して、(w, c(w; y))が
(z, c(z;x))の定数倍である w がただ一つ存在するので、それを w(z)と書く。この w(z)

は次の方程式
wc(z;x) = zc(w; y)

の解であるため、陰関数定理から連続微分可能である。z = u(x) のときには、v2z =

v1c(z;x)であるため、v2w(z) = v1c(w(z); y)でなければならず、これは w(z) = u(y)を
意味する。一方、上で考察したことから y � (w, c(w; y))となることはあり得ないため、
w(x1) > x1 である。したがって

w(x1) > x1, w(u(x)) = u(y) ≤ u(x)
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を得たので、中間値の定理から、w(z) = z を満たす z ∈ Ix が存在しなければならないが、
これは c(z;x) = c(z; y)を意味し、先ほどの推論と矛盾してしまう。よってこれはあり得
ない。以上から、我々は uが強く増加的であるという結論を得る。
定義から、明らかに uv(tv) = t である。ここで y = (ux(tv), c(ux(tv); tv)) とすれば、

y = (ux(tv)/x1)xと書ける。ところが一方で y1 = ux(tv)であり、よって y2 = c(y1; y) =

c(y1; tv)であるため、uv(y) = uv(tv)である。ここから、

t = uv(tv) = uv((ux(tv)/x1)x)

が得られる。これを tについて微分すると、連鎖律から

1 = (∇uv((ux(tv)/x1)x) · x)(∇ux(tv) · v)/x1

となる。特に tとして t∗ = uv(x)/v1 を取れば、上と同様の議論で ux(t
∗v) = x1 が示せ

るため、
∇uv(x) 6= 0

を得る。よって uv は非退化である。
最後に、すでに述べた結果から

uv(x) = uv(z, c(z;x))

である。これの両辺を z = x1 の点で z について微分すれば、

0 =
∂uv

∂x1
(x)− ∂uv

∂x2
(x)σ(x)

が得られる。したがって、
σ(x) =

∂uv

∂x1
(x)

∂uv

∂x2
(x)

となり、(1)式が確かめられた。以上で証明が完成した。 ■

以上より、限界代替率関数 σ から始めたモデルは、効用関数 uで始めるモデルに還元
することができる。しかし、実は重要な注意が一つあって、上で発見した u に対して、
fσ = fu となるかどうかは未知数なのである。u が準凹であれば定理 6.1 から fσ = fu

となるため、これは uが準凹にならない場合がありうるということを示している。
なぜ uが準凹でないとうまくいかないかを見るために、いま uが準凹でなかったとし
よう。すると、ある x, y ∈ Ωと t ∈]0, 1[に対して、

u((1− t)x+ ty) < min{u(x), u(y)}
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が成り立つ。z = (1− t)x+ ty として、p = (σ(z), 1),m = p · z と定義しよう。定義から
明らかに z ∈ fσ(p,m)である。一方、

p · z = (1− t)p · x+ tp · y

であるから、p · x ≤ mか p · y ≤ mのどちらかが必ず成り立つ。そして u(x) > u(z)か
つ u(y) > u(z) であるため、どちらの場合でも z /∈ fu(p,m) とならなければならない。
このように、fσ = fu となるためには uの準凹性は不可欠なのである。

6.4 弱弱公理と準凹性
前節で述べたように、uから始まるモデルが σ から始まるモデルと整合的であるために
は、準凹性が必要であった。しかし一方で、σ から始まるモデルが準凹な uに対応してい
るような前提条件を我々は置いていない。そして、準凹な uから (1)式で定義されるよう
な σ は、なんらかの追加条件が課せられているはずである。その条件を特定してみよう。
いま、x ∈ fσ(p,m)であるとしよう。このとき、p · x = mであり、かつ pはベクトル

(σ(x), 1)の定数倍である。ここで、p · y ≤ mかつ u(y) > u(x)となる y が存在するとま
ずいことになるのであった。これを禁止する条件として、次のような条件を考えよう。仮
に p · y ≤ mであるときには、y ∈ fσ(q, w)となる (q, w)に対して、q · x ≥ wである。こ
れは第９章で後に扱う弱弱公理 (weak weak axiom)と本質的に類似した条件である。
これを整理すると、

p · y ≤ p · x ⇒ q · x ≥ q · y

となる。特に p = (σ(x), 1)と q = (σ(y), 1)にこれを適用すると、σ についての条件

σ(x)y1 + y2 ≤ σ(x)x1 + x2 ⇒ σ(y)x1 + x2 ≥ σ(y)y1 + y2 (3)

を得る。この関係 (3)を、σ についての弱弱公理 (weak weak axiom)と呼ぼう。
次の定理がこの条件を理解するのに本質的に重要である。

定理 6.3. n = 2とし、Ω = R2
++ として、σ : Ω → R++ は連続微分可能であるとする。

このとき、以下の４条件は同値である。

(i) σ は弱弱公理を満たす。
(ii) 次の関数

a(x) ≡ ∂σ

∂x1
(x)− ∂σ

∂x2
(x)σ(x) (4)

に対して、a(x) ≤ 0がすべての点で成り立つ。
(iii) fσ = f≿ となる Ω上の弱順序 ≿が存在する。
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(iv) fσ = fu となる連続微分可能、強く増加的、準凹、非退化な関数 u : Ω → Rが存在
する。

さらに σ が k 階連続微分可能ならば、(iv)の uは k 階連続微分可能に取れる。

証明. (iv)が (iii)を意味するのは明らかである。
(iii)を仮定し、x, y ∈ Ωに対して

σ(x)y1 + y2 ≤ σ(x)x1 + x2

σ(y)x1 + x2 < σ(y)y1 + y2

であるとしよう。p = (σ(x), 1), q = (σ(y), 1) とし、m = p · x, w = q · y とする。こ
のとき、x ∈ fσ(p,m) = f≿(p,m) かつ p · y ≤ m であるため、x ≿ y となる。一方、
y ∈ fσ(q, w) = f≿(q, w)かつ q · x < w であるため、y ≿ xであるが、一方で q · x < w

であることから x /∈ fσ(q, w) = f≿(q, w)となるため、y � xである。ところがこれは上
で示したことと矛盾するため、あり得ない。故に σ は弱弱公理を満たし、(i)が示される。
今度は (ii)を仮定して (iv)を示そう。ひとつ補題が必要である。

補題 6.1. Ω = R2
++ とし、u : Ω → Rは強く増加的かつ連続であるとする。このとき、任

意の x ∈ Ωに対し、x1 を含む開区間 I 上で定義された関数 c : I → R++ で、以下の条件

u(y) = u(x) ⇔ y1 ∈ I, y2 = c(y1)

を満たすものがただ一つ存在する。そして、uが準凹であることは関数 c(y1)が常に凸で
あることと同値であり、また uが狭義準凹であることは関数 c(y1)が常に狭義凸であるこ
とと同値である。*2。

この補題の証明は補論において行う。この関数 c(y1)のことを、点 xを通る無差別曲線
(indifference curve)と呼ぶ。
さて、定理 6.2から、関係 (1)をすべての点で満たす連続微分可能、強く増加的で非退
化な実数値関数 u : Ω → Rが存在する。いま x ∈ Ωを任意に取り、ここを通る無差別曲
線 c(y1)を取る。このとき、この関数 c(y1)は x1 を含むある開区間 I 上で定義され、

u(y1, c(y1)) = u(x1, x2), c(x1) = x2

を満たす。陰関数定理からこの cは連続微分可能であり、連鎖律から

c′(y1) = −u1(y1, c(y1))

u2(y1, c(y1))
= −σ(y1, c(y1))

*2 実のところ、uが連続微分可能で∇u(x) ≫ 0ならば、(1)を満たす σ について定理 6.2の方程式 (2)の
解 c(z;x)が c(z)と一致する。
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を得る。σ は連続微分可能なので cは二階連続微分可能であり、

c′′(y1) = − ∂σ

∂x1
(y1, c(y1))−

∂σ

∂x2
(y1, c(y1))c

′(y1)

= − ∂σ

∂x1
(y1, c(y1)) +

∂σ

∂x2
(y1, c(y1))σ(y1, c(y1)) (5)

= − a(y1, c(y1))

を得る。したがって (ii) より、c(y1)は凸関数であり、よって uは準凹である。定理 6.1

から fσ = fu であり、故に (iv)が示された。また同時に、σ が k 階連続微分可能であれ
ば、定理 6.2からこの uは k階連続微分可能に取れるため、最後の主張も示されたことに
なる。
以上から、(iv) は (iii) を含意し、(iii) は (i) を含意し、(ii) は (iv) を含意することが

示されたので、あとは (i)が (ii)を含意することを示せば証明が終わる。まず、x ∈ Ωを
任意に取り、v = (−1, σ(x))とする。そして x(t) = x + tv として、p = (σ(x), 1)とし、
p(t) = (σ(x(t)), 1)とする。このとき、

p · x(t) = p · x+ tp · v = p · x

であり、したがって弱弱公理 (3)を適用することで、

p(t) · x ≥ p(t) · x(t)

を得る。これを加えることで、任意の t > 0について、x(t) ∈ Ωである限り

(x(t)− x) · (p(t)− p) ≤ 0

であるという関係を得るが、これを t2 で割って t ↓ 0とすれば、

0 ≥ lim
t↓0

1

t2
(x(t)− x) · (p(t)− p)

= lim
t↓0

1

t
v · (p(t)− p)

= lim
t↓0

−1

t
(σ(x(t))− σ(x))

=
∂σ

∂x1
(x)− ∂σ

∂x2
(x)σ(x)

= a(x)

となって、確かに (ii)が示された。以上で証明が完成した。 ■

以上によって、弱弱公理 (3)こそが fσ が需要関数であることの必要十分条件であるこ
とが判明した。ただし、fσ が一価関数であるかどうかが判然としないため、前章までの
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結果ともう少し精密にするために、もうひとつ公理を導入しておく。それは、x, y ∈ Ωに
ついて、x 6= y であるときには必ず

σ(x)y1 + y2 ≤ σ(x)x1 + x2 ⇒ σ(y)x1 + x2 > σ(y)y1 + y2 (6)

が成り立つ、というものである。この性質は弱公理 (weak axiom)と呼ぶことにする。

定理 6.4. n = 2とし、Ω = R2
++ として、σ : Ω → R++ は連続微分可能であるとする。

このとき、以下の４条件は同値である。

(I) σ は弱公理を満たす。
(II) fσ は一価で、顕示選好の弱公理を満たす。
(III) fσ は一価で、かつ fσ = f≿ となる弱順序が存在する。
(IV) fσ = fu となる連続微分可能、強く増加的、狭義準凹、非退化な関数 u : Ω → Rが

存在する。

また、σ が k 階連続微分可能ならば、(IV)の uは k 階連続微分可能に取れる。特に、(4)

式で定義した関数 a(x)が常に負であるならば、σ は弱公理を満たす。

証明. まず、(IV)を仮定すれば (III)がただちに得られる。次に (III)を仮定しよう。この
とき、x, y ∈ Ωとし、x 6= y で、x = fσ(p,m)かつ y = fσ(q, w)であり、かつ p · y ≤ m

とする。すると x � y でなければならない。もし q · x ≤ wならば y � xであるが、これ
はあり得ないため、q · x > w が得られる。よって fσ は顕示選好の弱公理を満たし、(II)

が得られる。
次に (II)を仮定しよう。x, y ∈ Ωかつ x 6= y とし、

σ(x)y1 + y2 ≤ σ(x)x1 + x2

とする。ここで p = (σ(x), q)として m = p · xとすると、x = fσ(p,m)かつ p · y ≤ m

である。一方、q = (σ(y), 1)とし、w = q · y とすると、y = fσ(q, w)であるため、顕示
選好の弱公理から q · x > w とならなければならないが、これは

σ(y)x1 + x2 > σ(y)y1 + y2

を意味する。したがってたしかに σ は弱公理を満たし、(I)が得られる。
今度は (I)を仮定しよう。まず fσ が一価であることを示す。仮に x, y ∈ fσ(p,m)かつ

x 6= y であるとしよう。p = (σ(x), 1)と仮定しても一般性を失わないが、このとき fσ の
定義から p = (σ(y), 1)でもある。したがって σ(x) = σ(y)であるが、一方で p · x = p · y
であり、よって

σ(x)x1 + x2 = σ(x)y1 + y2, σ(y)x1 + x2 = σ(y)y1 + y2
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となって弱公理に矛盾してしまう。よってこれはあり得ず、たしかに fσ は一価関数で
ある。
一方、明らかに弱公理は弱弱公理より強いから、定理 6.3 により、fσ = fu となる連

続微分可能、強く増加的、非退化で準凹な関数 u : Ω → R が存在する。ここで、x 6= y

を満たす x, y ∈ Ωと t ∈]0, 1[を取り、z = (1 − t)x + ty とする。p = (σ(z), 1)として、
m = p · z とする。このとき z = fσ(p,m)であるが、一方で

p · z = (1− t)p · x+ tp · y

であるから、p · x ≤ m あるいは p · y ≤ m のどちらかが成り立つ。前者が成り立てば、
x 6= fσ(p,m)なので、u(x) < u(z)となる。後者が成り立つ場合も同様に y 6= fσ(p,m)

なので、u(y) < u(z)となる。よって

u(z) > min{u(x), u(y)}

が得られたので、たしかに uは狭義準凹である。以上から、(I), (II), (III), (IV)はすべて
互いに同値である。また、σ が k 階連続微分可能ならば、いまの議論で用いた uは k 階
連続微分可能であることもわかる。
最後に、a(x) < 0 が常に成り立つとしよう。このとき、定理 6.3 の (ii) が成り立つか

ら、fσ = fu となるような連続微分可能、強く増加的、準凹、かつ非退化な uが存在す
る。さらに (5)式から、uの無差別曲線 c(y1)は狭義凸でなければならず、したがって u

は狭義準凹であり、(IV)が成り立つ。以上で証明が完成した。 ■

以下の系は、第５章をよく読んだ読者ならば簡単に理解できるであろう。

系 6.1. n = 2とし、Ω = R2
++ で、σ : Ω → R++ は連続微分可能で弱公理を満たすとす

る。このとき、fσ が (p,m) ∈ R2
++ ×R++ のまわりで連続微分可能であることと、(4)式

で定義された a(x)が x∗ = fσ(p,m)の点で a(x∗) < 0を満たすことは同値である。

証明. まず、a(x∗) < 0とする。ここで

F (x, p,m) =

(
σ(x)− p1

p2

p · x−m

)
と定義すると、定理 2.1 から x = fσ(q, w) であることと F (x, q, w) = 0 は同値である。
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そこで p1 = p2σ(x
∗)であることを利用すると∣∣∣∣∣∂F1

∂x1
(x∗, p,m) ∂F1

∂x2
(x∗, p,m)

∂F2

∂x1
(x∗, p,m) ∂F2

∂x2
(x∗, p,m)

∣∣∣∣∣
=

∣∣∣∣ ∂σ
∂x1

(x∗) ∂σ
∂x2

(x∗)

p1 p2

∣∣∣∣
= p2

∂σ

∂x1
(x∗)− p1

∂σ

∂x2
(x∗)

= p2

[
∂σ

∂x1
(x∗)− ∂σ

∂x2
(x∗)σ(x∗)

]
= p2a(x

∗) < 0

となる。したがって F には陰関数定理が適用可能で、ここから fσ が (p,m)のまわりで
連続微分可能であるという帰結を得る。
逆に fσ が (p,m)のまわりで連続微分可能であるとしよう。このとき、g(x) = (σ(x), 1)

と定義すると、これは fσ の逆需要関数である。ここから第５章の定理 5.2の証明と同様
に、fσ のスルツキー項 s11 = ∂fσ

∂p1
+ ∂fσ

∂m fσ を用いて

1

s11(g(x∗), g(x∗) · x∗)
= a(x∗)

が得られる*3。したがって a(x∗) 6= 0であるが、定理 6.3から a(x∗) ≤ 0であったため、
a(x∗) < 0を得る。以上で証明が完成した。 ■

最後に、小さいが大切な注意をしておきたい。我々は定理 6.1 から、定理 6.3 や定理
6.4にある fσ = fu という結果を導出した。しかし、fσ の定義域についてはなにも触れ
ていない。つまり、(p,m) ∈ R2

++ ×R++ の取り方によっては、fσ(p,m) = ∅となること
があり得る。ただし、定理 6.1の証明を読み直せばわかるように、fσ(p,m) = fu(p,m)

となることの根拠は定理 2.1であり、これは必要十分条件で書かれている。ここから容易
にわかるように、本章の定理において fσ = fu とは、fσ(p,m)が空集合であるときには
fu(p,m)も空集合である、という主張も含んでいる。つまり、fσ が空でない点の集合は
fu が空でない点の集合と完全に一致し、そこまで含めてこれらふたつの関数は一致する
のである。

6.5 改善過程の安定性
以上の定理から、σ を用いた理論は弱公理の下で普通の効用関数を用いる理論に置き換
えが可能であることがわかった。したがって、限界代替率を考察することで得られる理論

*3 いま、n = 2なので g のアントネッリ行列は 1× 1行列であり、計算するとこれが a(x)と一致すること
がわかる。
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上の広がりはそこまでないように見えるかもしれない。しかしながら、限界代替率を用い
たモデルは、効用関数を用いたモデルとは消費者が知っていることについての仮定が異な
るのである。効用関数を用いたモデルでは、消費者は自身の効用関数を知っていると解釈
されたので、それを最大化しさえすれば取引停止点にたどり着けた。しかし、限界代替率
モデルでは、消費者は手持ちが xであるときに σ(x)を知ることはできると仮定されてい
るが、それ以上はなにも仮定されていない。ということは、fσ(p,m)の点を消費者が見つ
けることができるという保証はどこにもないことになる。
これを解決するために与えられる新たな考え方が改善過程 (improving process) であ

る。改善過程は、以下の微分方程式

ẋ(t) = h(x(t); p,m) (7)

で与えられる。ただし、関数 h(x; p, t)は xについて局所リプシッツであり、さらに以下
の条件を満足しなければならない。第一に、p · x = mであるならば、

p1h1(x; p,m) + p2h2(x; p,m) = 0 (8)

でなければならない。第二に、p · x ≤ mかつ x /∈ fσ(p,m)ならば、

σ(x)h1(x; p,m) + h2(x; p,m) > 0 (9)

でなければならない。第三に、x ∈ fσ(p,m)ならば

h(x; p,m) = 0 (10)

でなければならない。
なぜこれを改善過程と呼ぶかを理解するために、以下の補題を導入しよう。

補題 6.2. n = 2 で Ω = R2
++ とし、σ : Ω → R++ は連続微分可能とする。また、

u : Ω → R は関係 (1) を満たす連続微分可能な関数とする。(p,m) ∈ R2
++ × R++ を

任意に取り、x(t) は区間 I 上で定義された改善過程 (7) の解で、ある t0 ∈ I において
p · x(t0) = mであるとする。このとき、以下の主張が成り立つ。

1) p · x(t) = mが常に成り立つ。
2) x(t) /∈ fσ(p,m)であれば d

dtu(x(t)) > 0である。
3) x(T ) ∈ fσ(p,m)ならば、任意の t ∈ I について x(t) = x(T )である。

証明. 記号の節約のために、予算制約を満たす消費計画の集合を

∆(p,m) = {x ∈ Ω|p · x ≤ m}

として与えておこう。そして、x0 = x(t0) とする。ここで、ある t+ ∈ I において
p · x(t+) 6= m となるとしよう。議論は対称的なので、t+ > t0 とする。t∗ = max{t ∈
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[t0, t
+]|p ·x(t) = m}とすると、t0 ≤ t∗ < t+かつ p ·x(t∗) = mである。ここで z = x(t∗)

として、一つ座標を落とした微分方程式

ẏ1(t) = h1(y1(t), (m− p1y1(t))/p2; p,m), y1(t
∗) = z1

を考えると、この方程式は定理 7.2の条件を満たすため、t0 を含むある開区間上で定義さ
れた解 y1(t)が存在する。ここで y2(t) = (m− p1y1(t))/p2 と定義すると、

p1y1(t) + p2y2(t) = m

となるが、一方で (8)式から

ẏ2(t) = −p1ẏ1(t)

p2
= −p1h1(y(t); p,m)

p2
= h2(y(t); p,m)

となるため、この y(t) = (y1(t), y2(t))は改善過程 (7)の解である。定理 7.2から解は一
意であるため、t∗ の十分近くでは y(t) = x(t)とならねばならないが、これは十分 t∗ に近
い t > t∗ について p · x(t) = mとなることを意味し、矛盾である。よって、このような
t+ は存在せず、1)が成り立つ。
次に、x(t) /∈ fσ(p,m)のとき、(9)より

d

dt
u(x(t)) = ∇u(x(t)) · h(x(t); p,m)

= u2(x(t))[σ(x(t)) · h1(x(t); p,m) + h2(x(t); p,m)] > 0

となるため、確かに 2)が成り立つ。
最後に、x(T ) ∈ fσ(p,m)である場合、(10)から、y(t) ≡ x(T )は y(T ) = x(T )を満た
す (7)の解であり、解の一意性命題から y(t)と x(t)は定義域の共通部分で一致する。し
かし y(t)の定義域は R全体であるから、3)が成り立つ。以上で証明が完成した。 ■

この補題から、微分方程式 (7)は、fσ(p,m)に到達していない消費者が自分の状況を改
善するために、予算制約を等号で満たす範囲で取引を続ける様子を描写したものであるこ
とがうかがえる。このために、この方程式は「改善過程」と呼ばれるのである。
特に、uが準凹で、また fσ(p,m)が一点集合 {x∗}であるときを考えよう。ここで

L(x) = u(x∗)− u(x)

とすると、この L(x)はいわゆる狭義のリアプノフ関数 (strict Lyapunov function)の条
件を満たしていることがわかる。したがって x∗ は (7)の定常状態として局所漸近安定で
ある。しかし、実は n = 2のときにはもっとシャープな結果を導くことができる。
以降の議論のために用語をひとつ追加しよう。改善過程 (7)が安定的 (stable)であると
は、fσ(p,m) 6= ∅であるような任意の (p,m) ∈ Rn

++ × R++ と、p · x0 = mを満たす任
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意の点 x0 ∈ Ω \ fσ(p,m)に対して、改善過程の x(0) = x0 を満たす延長不能解 x(t)は
R+ 全体で定義され、しかもこれは t → ∞のときに fσ(p,m)の中のどこかへと収束する
ことを言う。
このとき、以下の定理が成り立つ。

定理 6.5. n = 2とし、Ω = R2
++ とする。σ : Ω → R++ は連続微分可能であると仮定し、

さらに fσ は一価関数であるとする。このとき、条件 (8), (9), (10) を満たすどんな hに
ついても改善過程 (7)が安定的であることと、σ が弱弱公理を満たすことは同値である。

証明. まず、定理 6.2で存在が保証された関数 uを取る。もし σ が弱弱公理を満たしてい
なければ、a(x) > 0となる点 x ∈ Ωが少なくとも一カ所は存在しなければならない。こ
のとき、xを通る無差別曲線 c(y1)を取ると、

c′′(x1) = −a(x) < 0

である。そこで p = (σ(x), 1)とし、m = p · xとする。c′(x1) = −σ(x)であるため、十
分小さな ε > 0が存在して、0 < h < εである限り、

c′(x1 + h) < −σ(x)

である。したがって y1 = x1 + h, y2 = x2 − hσ(x)とすると、p · y = mかつ u(y) > u(x)

とならなければならない。このような y を一つ取って、改善過程の解 x(t)で x(0) = y を
満たすものを取ってこよう。このとき、u(y) > u(x)であるため、x(t)は絶対に xに収束
せず、したがってこの場合には改善過程は絶対に安定的にならない。
逆に、σ が弱弱公理を満たしていたとしよう。定理 6.4 から、σ が弱弱公理を満たし、

かつ fσ が一価関数であれば、σ は弱公理も満たす。よっていまの仮定では σ は弱公理を
満たしていることになる。ここで、ここで、fσ(p,m) 6= ∅となる (p,m) ∈ R2

++ × R++

を任意に取り、x∗ = fσ(p,m)であるとする。このとき、p · x = mかつ x 6= x∗ であるな
らば、

σ(x∗)x1 + x2 = σ(x∗)x∗
1 + x∗

2

である。もし x 6= x∗ であれば、弱公理から

σ(x)x1 + x2 < σ(x)x∗
1 + x∗

2

を得るので、これらを引き算することで

σ(x∗)(x1 − x∗
1) = x∗

2 − x2 > σ(x)(x1 − x∗
1)

がわかり、結局我々は
(σ(x)− σ(x∗))(x1 − x∗

1) < 0
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を得る。一方で (8)式と (9)式より、

σ(x∗)h1(x; p,m) + h2(x; p,m) = 0,

σ(x)h1(x; p,m) + h2(x; p,m) > 0

が得られるため、

σ(x∗)h1(x; p,m) = −h2(x; p,m) < σ(x)h1(x; p,m)

が示される。以上から、
h1(x; p,m)

{
> 0 if x1 < x∗

1,

< 0 if x1 > x∗
1

を得ることができる。さらに (8)より、

h2(x; p,m)

{
< 0 if x2 > x∗

2,

> 0 if x2 < x∗
2

も得られる。したがって、p · x = mとなる x 6= x∗ を取る限り、改善過程 (7)の延長不能
解 x(t)で x(0) = xを満たすものは、値を次のコンパクト集合

Cx = {(1− s)x+ sx∗|s ∈ [0, 1]}

に持たなければならない。もし延長不能解 x(t)の定義域 I について sup I < +∞である
とすれば、I∗ = [0, sup I]としたとき、I∗ × Cx はコンパクト集合であるため、補題 7.2

からある t ∈ I について (t, x(t)) /∈ I∗ × Cx となることになるが、このようなことはあり
得ないため矛盾が生ずる。したがって sup I = +∞であり、よって I は R+ を含まなけ
ればならない。ここで、

L(x) = u(x∗)− u(x)

と定義すると、L(x∗) = 0で、p · x ≤ mかつ x 6= x∗ ならば L(x) > 0で、さらに改善過
程の解 x(t)について、x(t) 6= x∗ ならば必ず

d

dt
L(x(t)) < 0

となる。そこで、仮にある x ∈ Ω について、p · x = m であるが、x(0) = x を満たす
(7)の延長不能解 x(t)が limt→∞ x(t) 6= x∗ となると仮定しよう。このとき、ある ε > 0

と単調数列 (tk) が存在して、tk → ∞ でありながら、‖x(tk) − x∗‖ ≥ ε を常に満たす。
xk = x(tk)とすると、すでに述べたとおり、これはコンパクト集合 Cx 上の点列である。
次にM = inft≥0 L(x(t))としよう。M > 0であると仮定すると、

D = {x ∈ Cx|L(x) ≥ M}, K = min{∇u(x) · h(x; p,m)|x ∈ D}
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とすると、K > 0であり、 d
dtL(x(t)) ≤ −K がすべての t ≥ 0について成り立つ。これは

L(x(t)) → −∞ を意味するが、L(x) は非負値関数なので矛盾が生ずる。よってM = 0

でなければならない。L(x(t))は tについて減少的なので、L(xk) → 0でなければならな
い。ここで部分列を取って xk → x+ となる点 x+ ∈ Cx の存在を仮定してよい。このと
き、‖x+−x∗‖ ≥ εであるが、一方で Lの連続性から L(x+) = 0であり、よって x+ = x∗

である。これは矛盾であるから、limt→∞ x(t) = x∗ でなければならないことがわかる。
よって、改善過程 (7)はたしかに安定的である。以上で証明が完成した。 ■

したがって、通常のモデル（uに連続微分可能性と増加性、狭義準凹性を認める立場）
で議論することを念頭に置く限り、σ で議論したモデルの帰結は効用最大化モデルと同じ
結果をもたらす。一方で、効用関数で議論できないモデルを構築すると、改善過程の結果
として正しい取引停止点を見つけることができない可能性を考慮しなければならない。こ
れが、限界代替率を用いた分析が教える結論である。

6.6 拡張の可能性
ここまでの結果は n = 2 かつ Ω = Rn

++ という仮定の下に得られた。n ≥ 3 の場合
や、Ω = Rn

+ の場合に拡張するとしたら何が起こるかについて、ここで簡単に触れておき
たい。
まず、n ≥ 3として、Ω = Rn

++ の場合の話を議論しておこう。この場合、財が複数あ
るので、限界代替率は第 i財と第 j 財の間で計られることになる。これを σij(x)と書く。
解釈から明らかに、σii(x) = 1でなければならない。また、限界代替率は互いに整合的で
なければならないという仮定を置く。つまり、

σik(x) = σij(x)σjk(x) (11)

と仮定する。これは以下のように説明される。いま第 i財がパン、第 j 財がワイン、第 k

財がりんごであるとする。このとき、パンとワインを交換する適正な比率が 1 : 10、パン
とりんごを交換する適正な比率が 1 : 2 である個人は、りんごとワインを 1 : 5 で交換す
るのが適正だと考えるであろうというのが、この (11)の意味である。ここで、「パンとワ
インを 1 : 10で交換してからりんごとワインを 1 : 5で交換するのと、単にパンとりんご
を 1 : 2で交換するのは等価である」という考え方をするのは間違っているという点に注
意が必要である。なぜなら、それを実行した場合、最終結果の前にパンとワインの交換が
いったん起こってしまうので、手持ちの消費ベクトル xが変わってしまう。すると限界代
替率も変わってしまうはずである。(11) は手持ちが変わったときの仮定についてはなに
も述べていないので、そのような解釈はできない。あくまで、仮想的に現状から取引する
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際に、この消費者が考える適正な交換比率の間での整合性があるという条件が (11)なの
である。
この条件 (11)の下で、まず

1 = σii(x) = σij(x)σji(x)

であるから、
σji(x) =

1

σij(x)

を得る。そこで gi(x) = σin(x)と定義すると、

σij(x) = σin(x)σnj(x) =
σin(x)

σjn(x)
=

gi(x)

gj(x)

となる。そして、σij(x) =
pi

pj
をすべての i, j について満たすための必要十分条件は

gi(x)

gj(x)
=

pi
pj

で与えられる。したがって、

fσ(p,m) = {x ∈ Ω|p · x = m and ∃µ > 0, g(x) = µp}

というのが、今回の取引停止点の集合である。
もし g(x) = λ(x)∇u(x)となる連続微分可能で準凹な関数 uと正値関数 λの組が存在
すれば、定理 2.1からただちに

fσ = fu

となることがわかる。しかし、そのための条件は弱弱公理だけでは足りない。なぜなら、
このような uと λが存在するためには、第５章で述べたように、g のアントネッリ行列が
対称でなければならないからである。この条件を今の g に適用すると、

∂σin

∂xj
− ∂σin

∂xn
σjn =

∂σjn

∂xi
− ∂σjn

∂xn
σin

が必要だということになる。第１０章で我々は、これと同値な条件として以下の公理を考
えることになる。いま、関数 x : [0, T ] → Ωがヴィーユ曲線 (Ville’s curve)であるとは、
それが区分的に連続微分可能であり、かつ

g(x(t)) · ẋ(t) > 0

を微分可能なすべての点で満たすことを言う。ヴィーユ曲線が存在しないとき、σ = (σij)

はヴィーユの公理 (Ville’s axiom)を満たすと言う。Hurwicz and Richter (1979)は、こ
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のヴィーユの公理がアントネッリ行列の対称性と同値であることを示した。これに関連し
て、「ヴィーユの公理と弱弱公理」のふたつが、連続微分可能で準凹な uで fσ = fu とな
るものが存在することの必要十分条件であることが知られている。
なお、ヴィーユ曲線が存在する場合には、改善過程の中に解軌道がヴィーユ曲線を含む

ものが存在することが示せる。したがって、定理 6.5の方にもヴィーユの公理が必要であ
る。さらに、安定性の条件は n = 2の場合ほどクリアにならない。詳細は第１０章を見る
か、Hosoya (2024b)を参照せよ。
以上の結果は Ω = Rn

++ で議論された。Ω = Rn
+ の場合には、ここまで簡単には議論で

きない。これは、主にふたつの理由による。まず、n = 2であるとき、次の関数

u(x) = (x1 + 1)(x2 + 1)

に付随する限界代替率 σ を計算しよう。簡単な計算により、

σ(x) =
x2 + 1

x1 + 1

となることがわかる。特に x = (0, 1)とすれば σ(x) = 2となる。ここで、p1 = 3, p2 =

m = 1とすると、
σ(x) = 2 < 3 =

p1
p2

となっている。現実の交換比率 p1

p2
よりも適正交換比率 σ(x) の方が低いので、この消費

者は第一財を売って第二財を買いたいという欲求を持っていることがわかる。しかし、彼
の手持ちの第一財は 0であるため、彼は第一財を売ることができない。

x1

x2

1

p

図 6.1 端点の状況

図 6.1はこの状況を表している。対応する効用関数 uの値を上昇させようとしても、負
の消費が許されていないため、彼は効用を増加させることができない。そして、予算制約
を満たす点の集合である青い三角形の中には、この点を通る無差別曲線の上に位置する点
はひとつも存在しないのである。したがって xは、交換比率と価格比が一致していないに
もかかわらず、効用最大化点であり、取引はここで停止せざるを得ない。
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この状況は、xが Rn
++ に位置していないことが原因で起こる。主にこの問題があった

ために、我々は当初 Ωとして Rn
++ だという仮定を置いたのであった。しかし、実は問題

はこれだけではない。今度は次の関数を考えてみよう。

u(x) =
√
x1 +

√
x2.

このとき、限界代替率は R2
++ 上では

σ(x) =

√
x2√
x1

として定義される。一方で x /∈ R2
++ のとき、uがこの点で微分できないため、σ は端点

で定義できない。ただし実は拡張することができて、例えば c > 0 に対して x = (c, 0)

のところで σ(x) = 0 とすれば、これは σ の連続的な拡張になる。そこで p = (0, 1) と
し、m = 0としたとき、x = (c, 0) ∈ fσ(p,m)となるのだが、一方で p · 2x = mであり、
u(2x) =

√
2u(x) > u(x)なので、x /∈ fu(p,m)となってしまうのである。

この問題は深刻である。端点に限界代替率を拡張させようとした場合、σ(x) = 0 や
σ(x) = +∞といった例外を許容しなければならない場合は多い。しかし、そうなったと
きに、fσ と fu が一致しない場合があるのである。第２章の定理 2.1では x∗ が uの定義
域の内部にあると仮定されていたのだが、ここで考えられている uは x = (c, 0)を定義域
の内部に持っていないし、xを定義域の内部に持つ連続微分可能な関数に局所的に拡張可
能ですらない。そのために、このような問題が起こってしまうのである。
なお、Ω = Rn

++ の場合にはこの問題は起こらない。これは、σ(x) = 0や σ(x) = +∞
を許容しても同様である。実際、Hosoya (2024b) では σ から導出される g の値域が
Rn

+ \ {0}であるとしか仮定していないので、σij(x) = 0となる可能性を排除していない。
最後に、本節では σ に連続微分可能性を仮定したが、これを落とせるかどうかについて
考えてみよう。残念ながら、σ が連続性しか満たさない場合には、おなじ σ に対して複数
の (2)式の解が求まってしまう場合がある。(2)式は無差別曲線を求める微分方程式だか
ら、これは同一の限界代替率に対して固定した点 x を通る複数の無差別曲線が引けてし
まうという可能性を意味している。これだと σ から選好を定義することは難しい。また、
xの取り方に応じて整合的に無差別曲線を取ることはできるかもしれないが、その場合で
も u の候補は複数存在することにも注意しなければならない。これを突き詰めた結果構
築されたのが、本書第７章で紹介されるマスコレルの反例である。一方で、(2)式の解の
一意性を保証するためだけであれば σ が局所リプシッツであればよく、そして Hosoya

(2024a)はその場合まで拡張した結果を示している。
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6.7 補論：補題 6.1の証明
ここでは補題 6.1の証明を行う。
まず、x ∈ Ωを任意に取って固定し、u(x) = u∗ とする。ここで

I = {y1 > 0|∃y2 > 0, u(y1, y2) = u∗}

と定義すると、I は少なくとも x1 を含み、したがって非空である。また、uは強く増加的
であるから、任意の y1 ∈ I に対して、u(y1, y2) = u∗ となる y2 はひとつしか存在し得な
い。そこでそれを c(y1)と書くことにする。
最初に証明すべきは、I が開区間であることである。いま、x の定数倍でない x∗ ∈ Ω

を取ると、十分大きな a > 0と十分小さな b > 0を取れば、ax∗ � x � bx∗ となるよう
にできる。すると、u(ax∗) > u > u(bx∗)であるため、中間値の定理から u(cx∗) = u∗ と
なる c > 0が存在する。これは cx∗

1 ∈ I を意味するが、cx∗ 6= xなので、I は少なくとも
ふたつ以上の点を含んでいる。
次に、y1, z1 ∈ I かつ y1 < z1 であるとし、対応して y2 = c(y1), z2 = c(z1) とする。

uは強く増加的であるから、y2 > z2 でなければならない。これは cが減少的であること
を意味する。次に、y1 < v1 < z1 を満たすすべての v1 に対して、u が強く増加的であ
ることにより、u(v1, z2) < u∗ < u(v1, y2) が成り立つ。したがって中間値の定理から、
u(v1, v2) = u∗ となる v2 が必ず存在する。これは v1 ∈ I を意味する。よって I は区間で
ある。
ここで、I に最小数 x̄1 が存在したとする。このとき、対応して x̄2 = c(x̄1) とし、

y2

y1
> x̄2

x̄1
となる (y1, y2) ∈ Ω を取ると、上で x と x∗ に行ったのと同様の議論から、

u(cy) = u∗ となる c > 0が存在する。このとき x̄1 は I の最小数であったから cy1 ≥ x̄1

であるが、すると y の取り方から cy2 > x̄2 となって、uが強く増加的であることと矛盾
する。かくして、I には最小数がないことがわかった。同様に I には最大数もないので、
I は開区間である。
ここで、uが準凹であるとしよう。このとき、y1, z1 ∈ I とし、y2 = c(y1), z2 = c(z1)

とすると、0 ≤ t ≤ 1である場合、

u((1− t)y + tz) ≥ min{u(y), u(z)} = u∗

である。したがって、

c((1− t)y1 + tz1) ≤ (1− t)y2 + tz2 = (1− t)c(y1) + tc(z1)

となる。故に cは凸関数である。もし uが狭義準凹であるならば、y1 6= z1かつ 0 < t < 1
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とすると
u((1− t)y + tz) > min{u(y), u(z)} = u∗

となるため、

c((1− t)y1 + tz1) < (1− t)y2 + tz2 = (1− t)c(z1) + tc(z1)

となり、よって cは狭義凸である。
逆に、どんな x ∈ Ωに対しても、そこから構成した無差別曲線 cが凸関数であるとしよ
う。x, y ∈ Ωを取る。一般性を失うことなく、u(y) ≥ u(x)であるとしよう。十分小さな
a > 0を取れば、x � ay となるため、u(x) > u(ay)である。したがって中間値の定理に
より、a < b ≤ 1となるある bについて u(x) = u(by)が成り立つ。そこで cを xを通る
無差別曲線として、ある t ∈ [0, 1]に対して z = (1− t)x+ tby とすると、cの凸性から

c(z1) ≤ (1− t)c(x1) + tc(by1) = (1− t)x2 + tby2 = z2

という結果を得る。これは u(z) ≥ u(x)を意味するため、

u((1− t)x+ ty) ≥ u((1− t)x+ tby) = u(z) ≥ u(x) = min{u(x), u(y)}

となって、uの準凹性が示される。次に cが常に狭義凸であるとし、x 6= yかつ 0 < t < 1

としよう。y が xの定数倍ならば y1 > x1 かつ y2 > x2 であり、uが強く増加的であるこ
とから、

u((1− t)x+ ty) > u(x) = min{u(x), u(y)}

となる。yが xの定数倍でない場合には、u(x) = u(by)となる b ≤ 1について、x1 6= by1

である。よって cを xを通る無差別曲線とすると、z = (1− t)x+ tby に対して

c(z1) < (1− t)c(x1) + tc(by1) = (1− t)x2 + tby2 = z2

となる。これは u(z) > u(x)を意味するため、

u((1− t)x+ ty) ≥ u((1− t)x+ tcy) = u(z) > u(x) = min{u(x), u(y)}

を得る。したがってこの場合、uは狭義準凹である。以上で証明が完成した。

文献案内
川俣 [10] によると、この限界代替率を用いた議論は、１８世紀のフランスにおける消
費者行動の理論を研究したグループですでに扱われていたようである。それが効用最大化
と結びつくことが指摘されたのはおそらく限界革命と言われる時代においてであり、直
接的にはWalras [9]の業績のひとつとして扱うことができると思われる。これに伴って、
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Pareto [4] もこの問題を深く考えた書籍である。このパレートの業績は、後に Antonelli

[1]によって先に解決した問題を扱ったに過ぎないとして Samuelson [6] 等で批判された
が、この批判の是非についての詳細は須田 [11]に詳しい。一方、Volterra [8]の批判を受
けたパレートは [4] のフランス語版 ([5]) において積分可能性の条件がない消費者理論の
構築を試みるが、うまくいったとは言いがたい。一方で、これら古典的な議論において準
凹性の果たす役割はほとんど議論されていない。したがって、弱弱公理や弱公理はこれら
古典的な文献には一切出てこない。
ヴィーユの公理は Ville [7]において提出された。Hurwicz and Richter (1979) は、こ

の種の問題においてヴィーユの公理とフロベニウスの定理を結びつけた論文である。これ
らの現代的な取り扱い、および σから連続微分可能性を取って局所リプシッツ性で議論し
た論文に Hosoya [2]がある。
本章の中では細矢 [12] の第７章にある微分方程式の理論を無制限に使用した。他の微

分方程式の参考文献としてはたとえばポントリャーギン [13] を挙げておく。ここにはリ
アプノフ関数の議論もより詳しく行われている。
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