このページは、細矢祐誉が私的に作成した資料その他を配布する際に使用しております。
 内容の保証はしませんので悪しからず。



ここ最近の研究成果については、arXiv.orgの該当ページを参照してください。
For a recent studies, see the following page in arXiv.org.
https://arxiv.org/search/?query=Yuhki+Hosoya&searchtype=all&source=header



2017年12月8日 横浜翠陵高等学校での出張講義『経済学のルールと報道について』資料
PDF資料


慶應『数理経済学演習』関連資料
マクロ動学の解から目的関数を逆算する問題
レイブソンの論文についてのメモ
準線形経済の均衡の一意性と安定性
アルトの効用理論について
アフリアット=ヴァリアンの検定理論のメモ
積分可能性の最新事情
効用理論の等価性
顕示選好理論についてのメモ
効用最大化と古い消費者理論の関係
クラーク微分とその応用


2021-22年度 中央大学『総合講座III(経済数学)』講義ノート
(コロナ下で急いで作ったので誤植が多いことが予想されます。注意して読むこと)
第1回:デデキントの切断公理
第2回:実数の基本性質
第3回:数列と級数
第4回:関数の連続性と最大最小原理
第5回:距離空間における関数の連続性
第6回:ノルムと内積、ユークリッド空間
第7回:連続性と多項式
第8回:平均値の定理、逆関数定理、連続微分可能性、テイラー展開
第9回:一様収束、複素数
第10回:整級数とその微分
第11回:様々な関数の連続性と微分可能性
第12回:多価関数、ベルジュの最大値原理、凸解析
第13回:可算無限、辞書式順序
第14回:ベルマンの最適性原理



2017年度 法政大学『経済数学』講義ノート
第1章:序論
第2章:さまざまな関数とその性質
第3章:関数の連続性と最大最小原理・中間値の定理
第4章:微分法(I)-定義と四則演算の公式、多項式の微分
第5章:微分法(II)-合成関数の微分の公式
第6章:微分法(III)-平均値の定理、ロピタルの公式、テイラー展開
第7章:偏微分
第8章:ベクトルと行列、合成関数の微分の公式
第9章:最適化理論(コンパクト集合)
第10章:最適化理論(凹関数、準凹関数)
第11章:最適化理論(KKT定理)
第12章:積分とその計算法
第13章:確率とスティルチェス積分
第14章:期待値と分散、共分散
第15章:ラムゼイモデル(離散時間型)
第16章:ベルマン方程式と政策関数
第17章:ラムゼイモデル(連続時間型)とHJB方程式



2016年度 東大『経済学のための数学』講義ノート
第1章:序論
第2章:距離空間の基本的性質
第3章:微分方程式の解の存在定理とその応用
第4章:ラグランジュの未定乗数法とその応用
第5章:需要関数から効用関数を逆算する
第6章:効用最大化仮説のノンパラメトリック検定
第7章:微分方程式の局所・大域安定性について
第8章:オイラー方程式と横断性条件
第9章:生物学および進化ゲームにおける微分方程式
試験問題
試験の解答と解説



Guillemin and Pollack ``Differential Topology''問題解答

この本は良書だが本文の一部は問題を解かないと理解できない。それを埋められるように解答例を作ったので参考までに。

第1章
第2章
第3章
第4章



Karatzas and Shreve ``Brownian Motion and Stochastic Calculus''問題解答

この本も上と同じく、本文の一部を問題を解かないと理解できないので解答例を作った。参考までに。なお、読書時の所見も同梱してあるが正確性は保証しかねる。(ChungのA Course in Probability TheoryとDudleyのReal Analysis and Probabilityを何度も使用しています)

第1章
第2章
第3章
第4章



博士論文(提出済み)



Ioffe and Tikhomirov『極値問題の理論』について